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Abstract

This paper experimentally studies social learning in directed networks. Human

subjects make predictions of an uncertain state of the world based on two sources

of information, a) their private information and b) social information that can be

gathered by waiting in a directed network. Theoretical predictions suggest that

human subjects should wait when the benefit from waiting in the network exceeds

the cost. Following the predictions, subjects will wait longer in a more connected

network with a low waiting cost. Experimental results support that subjects wait

longer in a more connected network or when the waiting cost is low, but they don’t

wait long enough as the equilibrium predicts. The observed deviation can be partly

explained by the quantal response equilibrium and partly explained by some subjects

adopting a simple heuristic.
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1 Introduction

Many economic decisions rely on social information obtained through a network. This social in-

formation can be transmitted vaguely through others’ behaviors or more precisely through costly

communication. When a decision is easy to reverse, for example, trying a new brand of yogurt, the

vague social information reflected from others’ behavior is sufficient for improved decision making;

however, when the decision becomes more costly to reverse, such as the purchase of a second-hand

vehicle or signing up a one-year rental lease, people may demand more precise information by talk-

ing to their direct and indirect friends in their social network. Previous studies on social learning

mostly focus on the observational learning (Anderson and Holt, 1997; Hung and Plott, 2001; Çelen

and Kariv, 2004; Goeree et al., 2007) and overlook the role of communication in the network. It is

important to fill in the gap to understand how people achieve social learning in a communication

network.

When a decision is hard to reverse, people may go beyond the observational learning and com-

municate with others in their network to obtain more information. Often the time, the information

flow is directed. Someone who has purchased a second-hand car is more likely to give advises than

gather more information about the market. Depending on the network structure and how costly it

is to wait before making a decision, a rational decision-maker should only wait when the increase

in their expected payoff exceeds the waiting cost as modeled in Acemoglu et al. (2014). Do people

make optimal decisions as this theory predicts? Specifically, do people utilize the communication

network the way it is modeled?

To test it, I run a laboratory experiment that takes a 2-by-2 between-subject design varying

the waiting cost and the directed communication network structure. Both networks are 5-person

directed networks with 10 edges and the same degree distribution. The difference lies in how much

information can be transmitted through the network. In the not fully connected network (network

NC), people are unable to obtain all the information no matter how long they wait in the network.

The network structure imposes an upper limit of how much information could be obtained at each

position. In comparison, the other network (network C) is fully connected. If people are patient

and wait for long enough, they can obtain all information possessed by everyone in the network. In

my experiment, observational learning is about whether other subjects have made a decision and

stopped gathering more information. Waiting incurs a cost but grants subjects the opportunity

to observe the private information of others directly. Communication is enforced to be truthful.

To make an optimal decision, a subject needs to 1) be perfect Bayesian updating; 2) understand

the structure of the network and the flow of the information. The pure-strategy perfect Bayesian

equilibrium predicts that subjects behave the same in network NC regardless of the waiting cost

and network C with high waiting cost. They should only wait longer in network C with a low

waiting cost.

What I find is that subjects tend to over-wait when 1) the waiting cost is low but the network is

not fully connected (over-wait for unobtainable information/redundant information); 2) the waiting

cost is high but the network is fully connected (over-judge the value of additional information); 3)
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they tend to under-wait when both the waiting cost is low and the network is fully connected. The

deviation from perfect Bayesian equilibrium could be partly explained by subjects making mistakes

and holding wrong beliefs. Heterogeneity among subjects is a second explanation of the observed

deviation in the lab. There seems to be a substantial proportion of subjects who use a simple

heuristic (always wait for 1 turn) in their decisions making in the directed network environment.

Mirroring the naive learning DeGroot’s model in an observational learning setting, in a directed

network, it is worthwhile to consider some naive stopping rules.

The paper is organized as follows. Section 2 reviews some related literature. Section 3 presents

the theoretical background and predictions of the experiment. In section 4, I explain the experi-

mental design, including the treatments, the choice of networks, and different parameters. Section

5 shows the main results.

2 Literature Review

2.1 Social learning and information choice

My experiment is related to the large and growing works of literature on social learning experi-

ments. Compared to the early stage social learning experiments, my experiment places subjects in

a more complicated environment where subjects may increase their signals’ qualities by waiting and

observing others’ signals. The classical social learning experiment was first proposed by Anderson

and Holt (1997) to test the social learning theories (Bikhchandani et al., 1992; Banerjee, 1992) in a

sequential-move structure. Sgroi (2003) modifies the classic social learning experiment by allowing

subjects to observe two independent draws of the jar, and finds that people will wait if their signals

are not informative, and the guesses are normally initialized by people with highly informative

signals.

Only recently people start modeling social learning in networks and paying attention to how the

network structure may influence learning. On one hand, some studies focus on how an exogenous

communication network would influence subjects’ belief formation in a simultaneous-move setting.

Although studies in this stream also investigate whether subjects embed the network structures in

their decision makings, the environment is fundamentally different from my experiment. In these

studies, subjects are first asked to make a guess based on their private information simultaneously.

Then they can observe their neighbors’ guesses in the network and change their guesses in the

next round. The game ends when the network reaches a consensus or by a random termination.

Subjects observe their neighbors’ guesses with no delay or any waiting cost. Their decisions are

not irreversible as they can freely change their decisions for multiple times within the allowed time.

For example, Grimm and Mengel (2020) study 3 different types of undirected network structures

(star, kite, circle) and whether subjects’ decision-makings vary based on their knowledge of the

structure of the network. Chandrasekhar et al. (2020) study 3 chosen undirected networks and try

to differentiate the agent types between DeGroot naive learning agent and Bayesian learning agent.

Choi et al. (2012) study a similar problem in 3-person networks.
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On the other hand, other studies focus more on the formation of networks in the social learning

experiment. Subjects are given the opportunity to link to their previous subjects. For example,

Çelen and Hyndman (2012) studies the endogenous formation of networks in groups of 4 subjects.

In their experiment, subjects make sequential decisions by observing a free private signal and paying

costs to observe previous subjects’ guesses. Consistent with the theoretical prediction, a small cost

of linking to previous subjects can increase the average welfare. They also find evidence suggesting

that people tend to over-link and conform excessively. My experiment is closer to this stream of

studies. When a subject decides to make an irreversible decision, it can be seen as the subject

drops all his out-degree links, thus it’s a reverse version of the network formation problem. Unlike

these studies where subjects freely form links with others in the network, in my experiment, the

network links are already formed. This experiment focuses more on whether subjects can utilize a

communication network the way it is commonly modeled.

It also contributes to the recent debate on subjects’ information choices in social learning.

Prior experiments document that subjects tend to over-weight their private information Weizsäcker

(2010), Ziegelmeyer et al. (2010) in a sequential move social learning experiment. In more recent and

complex environments, subjects also tend to acquire excessive social information or suboptimally

overweight the social information. (Goeree and Yariv (2015), Eyster et al. (2015), March and

Ziegelmeyer (2018), Duffy et al. (2019), Duffy et al. (2021)). Similar to these studies, subjects in

my experiment are given a private signal and can obtain social information from other subjects.

Unlike the previous settings, the social information subjects obtain is of higher quality through the

communication network: instead of others’ choices, subjects will observe others’ signals directly;

and subjects have some freedom in determining how much social information they want to gather.

By imposing the truthful communication assumption, I further simplify the Bayesian updating

problem in the inference stage. When the social information contains others’ behaviors, a correct

inference requires a correct belief about others and more involved statistical inferences. In my

experiment, a correct inference is only based on a simple counting of which state has more signals.

Conditional on the information a subject gathered, most inferences utilize the private and the social

information optimally, with an exception when the signals are not informative, subjects present a

slight tendency to rely on their private information.

2.2 Waiting game and information acquisition

My experiment is also related to the studies of waiting games and information acquisition. The

theoretical model is an investment game proposed by Chamley and Gale (1994), where firms with

different private information decide whether and when to invest in a joint project. In a waiting

game, subjects obtain signals with different quality and can delay their decision-makings to observe

other subjects’ behaviors with more informative signals. Delaying the decision incurs a waiting

cost. Previous studies have confirmed that subjects will wait when their signals are not informative

in various settings, and subjects are responsive to different waiting costs. (Ziegelmeyer et al.,

2005;Çelen and Hyndman, 2012; Ivanov et al. (2013)) The waiting games is conceptually different
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from my environment. Waiting is more profitable if others make prompt decisions in the waiting

games. In contrast, in my experiment, signals are transmitted in the network more smoothly when

subjects are patient enough.

In many costly information acquisition experiments (Kübler and Weizsäcker (2004) Kraemer

et al. (2006)), subjects are found to either excessively acquire information or behave rationally.

For example, Nelson et al. (2010) documents that experience matters for subjects to learn the

probability of an event. Çelen and Hyndman (2012) find subjects tend to over-link with others who

made a decision before them to over-acquire information. Kraemer et al. (2006) found about 50%

subjects acquire information excessively. Eyster et al. (2015) found around 75% subjects behave

as the Bayesian Equilibrium predicts, and the other 25% neglect redundancy. Consistent with

these findings, I find a large proportion of subjects who are able to behave rationally and there is

another share of subjects who adopt some simple heuristic in their decision-makings. Due to the

feature of experiment, the most popular strategy, “always wait for 1 turn”, means that subjects

may over-acquire or under-acquire social information in different treatments. Beyond that, I am

able to document some other types of subjects, for example, the lone wolfs and social animals as

suggested by Duffy et al. (2019),Duffy et al. (2021).

3 Theoretical Background

The design of this experiment studies how subjects learn through truthful communication with

their neighbors in an exogenous directed network. The model is adapted from Acemoglu et al.

(2014). In this section, I will describe the social learning problem, the communication environment

and discuss the theoretical prediction for Bayesian rational subjects.

3.1 Social Learning Problem

The basic structure of the problem is a variant of the social learning problem Bikhchandani et al.,

1992. There are two equally likely states of the world, let \ denote the true state of the world,

\ ∈ {0, 1}. Nature chooses one state randomly, 𝑃(\ = 0) = 𝑃(\ = 1) = 1
2 . The state of the world \ is

unknown to all subjects.

For a finite set 𝑁𝑛 = {1, 2, 3, ..., 𝑛 = 5} of subjects, each subject 𝑖 ∈ 𝑁𝑛 makes an irreversible guess

of the true state of the world 𝑥𝑖 ∈ {0, 1}. The goal for each subject is to correctly identify the true

state of the world.The payoff function can be expressed as Ψ − 𝜓(𝑥𝑖 − \)2 where 𝜓 is a constant. If

the guess is correct, the subject will receive a large amount of payoff, denoted as Ψ; if the guess

is incorrect, the subject will receive a small amount of payoff, denoted as Ψ − 𝜓. By construction,

𝜓 < Ψ. In my experiment, Ψ = 140, Ψ − 𝜓 = 40.

Before making the guess, each subject 𝑖 is endowed with an informative private signal, denoted as

𝑠𝑖. The signal will reflect the true state of the world with precision q, where 1
2 ≤ 𝑞 ≤ 1. The signals

that each subject receives are independently and identically distributed. In my experiment, the

precision q is set to be 0.7.
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Other than the private signal, each subject also has the opportunity to learn more signals from

their neighbors. Unlike the classic social learning experiment where subjects can only observe other

subjects’ guesses, in this model, subjects can observe other subjects’ private signals. How much

additional information a subject can obtain is constrained by an exogenous communication network.

Subjects are randomly assigned to a node in a directed network. The network predetermines

how information is aggregated among subjects in the group. With complete information of the

communication network, subjects can wait to acquire more private signals of others before they

make the irreversible guess.

To sum up, in this experiment, a subject needs to make two-step decisions. Given the exogenous

communication network and their assigned node position, subjects need to decide 1) how much

additional information from their neighbors they want to obtain; 2) based on all acquired signal(s),

the guess of the true state of the world.

3.2 Communication Environment

3.2.1 General settings and concepts for the communication network

In a directed network, I assume subject 𝑖 forms beliefs about the state of the world from her private

signal 𝑠𝑖 and the information she obtains from other subjects through a given communication

network 𝐺𝑛. The communication network 𝐺𝑛 represents the set of communication constraints

imposed on all subjects.

I assume that turn 𝑡 is discrete by turns, and there is a cost 𝑐 for waiting in each turn. Com-

munication happens in each turn. At each turn 𝑡, subject 𝑖 decides to ”wait” or ”guess”. Waiting

incurs a cost but may allow the subject to obtain more information in the subsequent turn from her

neighbors in the communication network. Guessing means that the subject 𝑖 exits the game, stops

gathering more information, and will obtain her payoff based on the guess. In my experiment, I

picked two levels of costs: Low cost, 𝑐𝐿 = 1; High cost, 𝑐𝐻 = 8.

Each subject obtains information from other subjects through a communication network repre-

sented by a directed graph 𝐺𝑛 = (𝑁𝑛, 𝜖𝑛), where 𝜖𝑛 is the set of directed edges with which subjects

are linked. We say that subject 𝑗 can obtain information from subject 𝑖 if there is an edge from

𝑖 to 𝑗 in graph 𝐺𝑛, that is, (𝑖, 𝑗) ∈ 𝜖𝑛. Let 𝐼𝑛
𝑖,𝑡

denote the information set of subject 𝑖 at turn t

and let ℑ𝑛
𝑖,𝑡

denote the set of all possible information sets. For every pair of subject 𝑖, 𝑗 , such that

(𝑖, 𝑗) ∈ 𝜖𝑛, we say that subject 𝑖 is subject 𝑗 ’s information source and sends a message 𝑚𝑛
𝑖 𝑗,𝑡

to

subject j at turn t with the following map:

𝑚𝑛
𝑖 𝑗,𝑡 : 𝐼

𝑛
𝑖,𝑡 → 𝑀𝑛

𝑖 𝑗,𝑡 , for (𝑖, 𝑗) ∈ 𝜖𝑛

I define the information set of subject i at turn 𝑡 ≥ 1 as:

𝐼𝑛𝑖,𝑡 = {𝑠𝑖 , 𝑚𝑛
𝑗𝑡 ,𝜏 for all 1 ≤ 𝜏 ≤ 𝑇, and 𝑗 such that ( 𝑗 , 𝑖) ∈ 𝜖𝑛}
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and 𝐼𝑛
𝑖,0 = 𝑠𝑖. In particular, the information set of subject 𝑖 at turn 𝑡 > 0 consists of her private

signal, and all the messages her information sources sent to subject 𝑖.

To further simplify the environment, in my experiment, I enforce truthful communication among

subjects. Truthful communication has three implications: (i) communication is restricted to sharing

private signals. To avoid information duplication, each subject’s private signal will be tagged with

his subject ID. (ii) subjects cannot strategically change the message they send in the network,

which means that they can’t lie or withhold the information they obtain. For example, at turn

t, a subject 𝑗 will send all the private signals he gathered till turn 𝑡 − 1 to all subjects who can

receive his message. (iii) when a subject has made an irreversible decision, she stops gathering

new information from her information sources. This means that she will only be able to share the

information she gathered before she made the decision.

3.2.2 An illustration of the timing of communication

All subjects are placed in a directed communication network with complete information about the

network structure (the total number of nodes, their own node’s position, complete knowledge of all

the directed edges, etc).

• At turn 𝑡 = 0:

– Each subject 𝑖 observes a private signal 𝑠𝑖;

– Each subject’s information set contains the private signal she observes.

– Each subject i chooses 𝑥𝑖0 ∈ {wait, guess}

• At turn 𝑡 = 1, 2, 3...:

– If a subject chose to 𝑥𝑖𝑡−1 = ”wait” at 𝑡 − 1 :

∗ She observes the information set of her information sources and updates her infor-

mation set to 𝐼𝑖𝑡 . In this process, the signals in her information source’s information

set at 𝑡 −1 are transmitted to the subject. The information set will only update any

new signals transmitted in each turn 𝑡.

∗ She chooses 𝑥𝑖𝑡 ∈ {wait, guess}

– If a subject chose to 𝑥𝑖𝑡−1 = ”guess” at t-1:

∗ She stops gathering more information from her neighbors. Her information set stops

growing.

∗ 𝑥𝑖𝑡 = 𝑥𝑖𝑡−1
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3.2.3 Two Networks in the experiment

Table 1: Theoretical Predictions for each treatment

Network NC Network C

A

B

C

E

D

”no path to A”

A

B

C

E

D

”path=1”

Notes: The table shows the two directed networks tested in the experiment. The circles/nodes indicate

the positions of each subject in a 5-person directed network. Arrows show how the information is

transmitted. An arrow from node A to node B indicates that A’s information set gathered at turn

𝑡 − 1 will be communicated to node B in turn 𝑡. The green arrows show whether the “information

maven” can transmit his message to the “information spreader”. The left panel shows the network

NC’s structure, where the red arrow indicates the main difference between network NC and network C.

The right panel shows the structure of network C and the orange arrow indicates the main difference

from the other network.

Table 2: The difference by Nodes

Position 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒𝑖 𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒𝑖

A 1(NC) / 2(C) 4

B 3 1

C 2 (NC) / 1 (C) 1

D 1 1

E 1 1

Now, I explain the two networks I tested in the experiment. In a directed network, subject 𝑖

is connected with subject 𝑗 through arrows. The arrow indicates the direction of the message

transmission process. For example, an arrow from subject 𝑖 to subject 𝑗 means that subject 𝑖 is

subject 𝑗 ’s information source and will send his message to subject 𝑗 in each turn. For each subject

𝑖, let 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒𝑖 denote the number of subject 𝑖’s information source(s) and let 𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒𝑖 denote

the number of subjects who deem subject 𝑖 as their information source.

This experiment studies two 5-Node directed networks with 8 edges. They have very similar

degree distribution. Both networks consist of one node with a high out-degree level (𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒=4,

denoted as A), one node with a high in-degree level (𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒=3, denoted as node B), and three

other nodes with limited edges that only connect to the first two nodes. The node with a high

out-degree level can be seen as a ”social connector” who spreads the information in the network. In

the network, node A is designed to be the ”social connector” which is the information source for all

other nodes in the network. The node with a high in-degree can be seen as an ”information maven”

that aggregates most of the information communicated in the network. In the network, node B

is designed to be the ”information maven” which always has node A, C, and D as its information
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sources. B is an imperfect ”information maven” as it can’t directly observe E’s signal. Node E is

designed to be a more ”isolated” node in the network that only connects to node A. The signal of

E can only be transmitted through A, the ”social connector”, if A is willing to wait at turn 𝑡 = 0.

The two networks differ by the distance between the “information maven” and the “social

connector”. In network NC, the “information maven” B is not connected to the “social connector”

A. Thus, the network structure is not fully connected(NC). Some subjects in this network can

never observe all five signals. In network C, the “information maven” B is an information source

of the “social connector” A and can communicate directly to A. This network is fully connected

(C) because if everyone is patient enough, all subjects in this network can observe 5 signals. To

illustrate the differences better, as shown in Figure. 1, I highlighted the out-edge of B with different

colors and mark out the path from B to A with green dashed lines.

Network NC is a weakly connected communication network. The network limits some nodes

from obtaining all other nodes’ information. For example, node C and D’s signals can never

be transmitted to A and E. This kind of information segregation limits the highest attainable

informativeness of A and E. Moreover, it prompts the ”social connector” A to make a decision

without waiting, which cuts off the information transmission of E and further reduces the learning

efficiency of the network.

Network C can be seen as an ”improvement” of the network NC because it breaks the infor-

mation segregation. In this network, nodes are connected to each other, meaning that the signal

observed by one node can potentially be transmitted to any other node. Moreover, since the ”in-

formation maven” is relatively close to the ”social connector”, the information is expected to flow

quickly in the network.

3.3 Individual Optimization

Subject 𝑖’s action at turn 𝑡 is a mapping from her information set to the set of actions, i.e.,

𝜎𝑛
𝑖,𝑡 : ℑ

𝑛
𝑖,𝑡 → { ”wait” } ∪ {0, 1}

The tradeoff now becomes: a subject would wait so as to communicate indirectly with a larger

set of subjects and choose a better action. However, the future is discounted and delaying is costly.

In particular, subject 𝑖’s value function at turn 𝑡 when her information set is 𝐼𝑛
𝑖,𝑡

is given by the

expression:

𝑈𝑛
𝑖,𝑡 (𝐼𝑛𝑖,𝑡 ) = 𝑚𝑎𝑥{ max

𝑥𝑖
E[Ψ − 𝜓(𝑥𝑖 − \)2 |𝐼𝑛𝑖,𝑡 ]︸                              ︷︷                              ︸

Expected Payoff of the Correct Guess at t

, {E[𝑈𝑖,𝑡+Δ𝑡 (𝐼𝑛𝑖,𝑡+Δ𝑡 ) |𝐼
𝑛
𝑖,𝑡 ] − 𝑐 ∗ Δ𝑡, for Δ𝑡 = 1, 2, ...}︸                                                              ︷︷                                                              ︸

Discounted Value to Decide Later

}

(1)

This expression involves a double maximization: first, the subject decides whether to wait or to
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guess, and in the case that she decides to guess, she chooses the one that maximizes her expected

instantaneous payoff. If subject 𝑖 decides to guess at turn t, the optimal action would be

𝑥
𝑛,∗
𝑖,𝑡

= argmax
𝑥
E[Ψ − 𝜓(𝑥 − \)2 |𝐼𝑛𝑖,𝑡 ]

Since “guess” is irreversible, the subject’s decision problem reduces to determining the timing

of her action. The optimal stopping problem for subject 𝑖 depends crucially on the actions of the

rest of the subjects, since the latter affects subject 𝑖’s information set.

3.4 Social Planner’s problem

A social planner whose objective is to maximize the aggregate expected welfare of the population

of 𝑛 subjects would implement the timing profile that is a solution to the optimization problem:

max
𝑠𝑝𝑛

𝑛∑︁
𝑖=1

E𝑠𝑝𝑛 [𝑈𝑛
𝐼 ]

where 𝑠𝑝𝑛 = (𝜏𝑛,𝑠𝑝1 , 𝜏
𝑛,𝑠𝑝

2 , ..., 𝜏
𝑛,𝑠𝑝
𝑛 ) and 𝜏

𝑛,𝑠𝑝

𝑖
implies that subject i stops exchanging information

and takes an action after 𝜏𝑛,𝑠𝑝
𝑖

communication rounds.

3.5 Theoretical Predictions for the Rational Model

Since the time is discrete, it is possible to obtain the Pure-Strategy Perfect Bayesian Equilibrium

through backward induction. I provide the optimal stopping rule for each node in all four treat-

ments. The details of how to reach the prediction are provided in appendix Appendix A.1. ”For

non-equilibrium choices, the model predicts that thresholds are increasing in individual precision

choices.” (From 𝑠𝑧𝑘𝑢𝑝𝑡𝑟𝑒𝑣𝑖𝑛𝑜2020).

Network NC Network C

Waiting cost (not fully connected) ( fully connected)

𝑐ℎ = 8 (0,1,1,0,0) (1,1,0,0,0)

- -

𝑐𝑙 = 1 (0,1,1,0,0) (2,2,3,3,3)

P.I. (1,2,2,1,0)

The prediction shows that in network NC, the optimal choice for nodes with 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 = 1 is

to make a prediction at turn 0 (corresponding to nodes A,D,E). The optimal choice for nodes with

𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 > 1 is to wait for 1 turn (corresponding to nodes B and C). When the waiting cost is

low, there exists a Pareto improvement if the subject at node A is willing to wait for 1 turn and let

the signal of E pass down the network, the accuracy of prediction could be improved by increasing

the informativeness of 3 other subjects at nodes B,C,D, and the overall network’s welfare.

When the network is fully connected (network C), the optimal choice for all positions differ

between a high and a low waiting cost. When the waiting cost is high, in the sense that the
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improved informativeness cannot offset the cost of waiting for one more turn to obtain more signals,

the optimal choices for nodes with 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 = 1 is the same as the ones in network NC. When the

waiting cost is low, it is optimal for all nodes to wait sufficiently long and observe all 5 signals in

the network. It means that the optimal choice for nodes with 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 > 1 is to wait for 2 turns

and for nodes with 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 = 1 to wait for 3 turns. There is no Pareto improvement.

Based on the equilibrium predictions, I formulate the following hypotheses for the group and

individual behaviors.

Hypothesis 1 Groups are only responsive to the waiting cost in network C. When the waiting cost

is low and the network is fully connected, the average waiting turn is longer. The average waiting

turn for the other three treatments will be the same.

(a) The average waiting turns can be ranked as: 0.4 = NC H = NC L = C H < C L = 2.6.

(b) At nodes with indegree=1 (node A, D, and E in network NC; node C,D, and E in network

C), the ranking is: 0 = NC H = NC L = C H < C L = 2.

(c) At nodes with indegree=2 or 3 (node B,C in network NC; node A,B in network C), the ranking

is: 1 = NC H = NC L = C H < C L = 3.

Hypothesis 2 The information transmitted (measured by the number of signals transmitted) in

network C with low waiting cost is the highest. In the other three treatments, the information

transmitted (signals transferred among subjects) is the same and lower than Network C with low

cost.

Hypothesis 3 The welfare is the highest in Network C with low waiting cost, followed by Network

NC with low waiting cost. The welfare in network NC and network C with high waiting cost is

almost the same.

4 Experimental Design and Administration

To empirically test whether subjects behave in a directed network as the theory predicts, I designed

a between-subject experiment that systematically varies (i) the waiting cost; (ii) the network struc-

ture. Each session consisted of instructions, an incentivized quiz to ensure that subjects understood

the instructions, 10 supergames, and a demographic survey. All payoffs were displayed in Exper-

imental Currency Units (ECUs) and were converted to USD at the end of the experiment at 76

ECUs equals one US dollar. Next, I describe specific parts of the experimental design in more

detail.

4.1 Repeated Games with Position Rotation

In each session, subjects are randomly matched into groups of five for 10 supergames. In each

supergame, they interact with the same group members for 3 rounds. 1 In each round, they face a

1In the pilot session (NC-l), subjects interact with the same group members for 4 rounds.
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new “main task” and decide to wait for how long before making an irreversible prediction.

To test whether subjects respond to different positions in a directed network and help them

understand the network structure better, I rotate subjects’ positions at the beginning of each su-

pergame. Subjects will experience each position twice in the experiment. The program is designed

to ensure that everyone has experienced each position once in the first five rounds.2 Figure 1

presents how the environment is presented to subjects in NC l treatment. Throughout the exper-

iment, subjects are reminded of their network position in each match as presented in figure 1 (2)

network position. Their current position is denoted as a solid blue circle. Their information sources

are marked with a blue circle.

Figure 1: Turn 0 Round Beginning Screenshot

1

2

3

4

5

Notes: The screenshot shows the turn 0 beginning screen for a subject at node D in network NC with

low cost. Subjects at other positions in the network see a similar screen that only differs in the picture

of (2). The screenshot shows: (1) match and round information: if subjects wait for future turns, the

text will reflect which turn they are at. For example, at turn 1, the text shows“Continue of Round

1, Turn 1:”. (2) network position: subjects’ assigned position in the network is marked out by a solid

blue cycle. Their information source is marked out with a blue circle. (3) urn selection: the main

task. (4) information summary: subjects’ private information and social information are relected in

this section. If subjects wait for future turns, the information in this section will change accordingly.

(5) decide to predict or wait: subjects make their decisions in this section. Their payoffs of a correct

and an incorrect guess are reminded here alongside with how much cost they have spent so far.

2Subjects are not explicitly told about this detail. They only know their positions will change at the beginning of
each supergame.
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4.2 Main Task Representation

The main task is described as an urn guessing game. At the beginning of each round, the computer

randomly chooses one urn which is either a red urn or a blue urn. Subjects’ task is to guess which

urn is chosen based on their private information and any other information they are willing to

acquire from the network. This task is visualized and presented in figure 1 (3) urn selection.

4.3 Dynamic Information Summary

To facilitate their guessing, they can take advantage of two sources of information, which are pre-

sented in figure 1 (4) information summary. The first type of information is the private information

which is given to them at the beginning of each round. The information is presented as a ball drawn

from the randomly chosen urn and the color of the ball (the content of the private information)

is directly observable to the subject. The second type of information is social information which

can be acquired by waiting in their assigned network. The network information is described as the

ball drawn to other subjects in the network. As long as subjects wait in their network, they will

have the opportunity to view others’ ball colors when they make the prediction. They have access

to their information sources’ owned information with a one-turn lag. To reduce cognitive burden,

in the interface, they are reminded of how much additional information they have acquired so far.

Moreover, they will know who in the network has made a prediction as shown in figure 2.

In each round, subjects can decide how many turns they want to wait before making an irre-

versible decision. In figure 1 (5) Decide: predict or wait, they see the relevant payoff information

and choose to decide or wait for each turn.

If subjects decide to wait, their information summary section will change to reflect the additional

information in the next turn. See figure 2 for two different situations when a subject at node D in

network NC decides to wait for 1 and 2 turns. Although the additional information obtained at

turn 1 is always certain, additional information which can be acquired in turn 2 depends on others’

decisions.
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Figure 2: Different Information Summary from Waiting Screenshots

1

2

3

4

Notes: The screenshot shows the information summary of turn 1 and turn 2 for a subject at node D in

network NC with low cost. The left column shows a situation when only the subject at node A makes

a perdiction at turn 0. The right column shows another situation when no one in the network makes a

prediction at turn 0. The information summary includes: (1) directly observable private information,

(2) turn information, (3) network information that is not directly observable, (4) group members who

have predicted. Note conditional on when the subject at node A predicts, the information obtainable

at turn 2 is different for subject D.

4.4 Prediction Page

Whenever a subject decides to make a prediction, he will see all information content gathered so far

and make a decision accordingly. Figure 3 shows a prediction page for subjects at D who predicts

at turn 2 and gathered 2 additional signals.
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Figure 3: Turn 2 Prediction Page Screenshot

1

2

3

4

Notes: The screenshot shows the turn 2 prediction screen for a subject at node D in network NC with

low cost. Subjects at other positions in the network see a similar screen that only differs in the picture

of (2). The screenshot shows: (1) prediction page, (2) network position, (3) urn selection, (4) revealed

network information.

4.5 Administration Details

The main treatment of the experiment consisted of 13 sessions run at the Vernon Smith Experi-

mental Economics Laboratory at Purdue University in 2021. Details of each session are provided

in Table A-4 in the Appendix. On average, each session takes around 90 minutes. The average

payment for each subject is $24.5.

Table 3: Summary of Experiment Administration

Treatment Administration Demographics

Network Type Waiting Cost Sessions Earnings % Male % STEM % U.S. Borned

0 C H 2 23.05 65.0 85.0 40.0

1 C L 5 24.84 50.0 56.0 70.0

2 NC H 2 24.55 55.0 55.0 65.0

3 NC L 4 24.92 50.0 60.0 67.5

Notes: % STEM denotes the proportion of participants that are in STEM majors. % US HS denotes

the proportion of participants that completed high school in the US.
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5 Experimental Results

5.1 Do people wait as pure-strategy Bayesian equilibrium predicts?

5.1.1 Between-subject Analysis

Figure 4: Group Average Waiting Turns by Treatment

Notes: From left to right, the sub-figures show the average group waiting turns for all nodes, nodes

with 1, and multiple information sources. The solid lines indicate network C while the dashed lines

indicate network NC. The triangle markers indicate the low waiting cost treatment while the round

markers indicate the high waiting cost treatment. The blue and the black solid lines show the pure

strategy perfect Bayesian equilibrium for treatment C l and the other three treatments. The shades

indicate 90% bootstrap confidence intervals.

I start by comparing the group average waiting turns across treatments. In the lab, subjects don’t

behave exactly as the theoretical predictions as shown in figure 4. The deviation comes from two

ends. On one hand, I observe over-waiting in treatments NC l and C h. Based on the pure-strategy

Bayesian equilibrium, the group average waiting turns should stay around the same for these three

treatments. Although the average waiting turns is close to the theoretical predictions in NC h

treatment (average waiting turn is 0.69). Subjects wait significantly longer when the network is

fully connected (average waiting turns in C h is 1.18, p-value=0.029 ) or the waiting cost is higher

(average waiting turns in NC l is 1.12, p-value=0.023)3. On the other hand, subjects tend to under-

waiting in treatment C l. Having both features (a fully connected network and low waiting cost)

doesn’t increase the average waiting turns significantly higher as the theory predicts (the average

waiting turn in C l is 1.48, higher than NC l with p-value = 0.023, but not different from C h with

3Unless otherwise noted, throughout the paper, the reported p-value is based on non-parametric permutation test.

15



p-value = 0.154). The results hold for all matches or only consider the latter 5 rounds. Individual

random-effect regression results confirm the findings as presented in table 4.

By InDegrees, it is clear to see that the differences across treatments are mainly driven by

subjects’ behaviors at nodes with 1 information source(InDegree=1). The average waiting turns

are significantly different from 0, the theoretical prediction, even in the treatment closest to the

prediction (NC h=0.46, > 0 with p-value<0.01). Unlike the theoretical predictions, subjects are

responsive to the network structure and the waiting cost. With low waiting cost (NC l), subjects

on average wait for 0.96 turns before making a guess (NC l > NC h with p-value = 0.017). In a

fully connected network (C h), subjects with 1 information source on average wait for 1.3 turns(C h

> NC h with p-value = 0.019). Although subjects tend to over-wait in treatments C h and NC h,

they under-wait in treatment C l. The average waiting turns in C l are 1.6, close to the theoretical

predictions but significantly lower. This under-waiting is partly driven by the under-waiting of

subjects at nodes with multiple information sources.

With multiple information sources, subjects in all four treatments wait for around 1 turn before

making a guess. Although subjects tend to wait longer when the waiting cost is low, subjects

at nodes with multiple information sources significantly under-wait in treatment C l, causing the

deviation in treatment C l to be the largest from the theoretical predictions.

Result 1 Subjects deviate from the pure strategy Bayesian equilibrium. Groups are responsive to

the waiting cost in both networks. For a given waiting cost, being in a fully connected network

increases the average waiting turn. The average waiting turn is ranked as NC h < NC l ≈ C h <

C l.

(a) At nodes with indegree=1, the ranking is 0 < NC h < NC l ≈ C h < C l < 2.

(b) At nodes with indegree>1, the ranking is 1 ≈ NC h ≈ C h < NC l ≈ C l < 3.
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Table 4: Individual Decision Turns

All Nodes Single Information Source Multiple Information Source

(1) (2) (3) (4) (5) (6) (7) (8) (9)

network C 0.49*** 0.41* 0.44*** 0.84*** 0.69*** 0.75*** -0.04 -0.04 -0.05

(0.15) (0.21) (0.16) (0.17) (0.21) (0.14) (0.13) (0.22) (0.19)

low waiting cost 0.41*** 0.27*** 0.31*** 0.50*** 0.30*** 0.34*** 0.27** 0.18 0.25**

(0.11) (0.09) (0.07) (0.12) (0.08) (0.08) (0.11) (0.12) (0.10)

network C * low waiting cost -0.11 -0.08 -0.03 -0.19 -0.15 -0.13 0.00 0.03 0.12

(0.24) (0.25) (0.20) (0.27) (0.25) (0.21) (0.20) (0.25) (0.20)

log(round) -0.06* -0.06** -0.06 -0.06 -0.05 -0.06

(0.03) (0.03) (0.04) (0.04) (0.04) (0.04)

Individual waiting time in round 1 0.15*** 0.11*** 0.15*** 0.11*** 0.15*** 0.10**

(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

Previous A’s average waiting time -0.04 -0.05 0.06 0.03 -0.14 -0.16

(0.08) (0.08) (0.10) (0.10) (0.11) (0.11)

Previous group average waiting time 0.15 0.14 0.19 0.18 0.11 0.10

(0.09) (0.09) (0.12) (0.12) (0.10) (0.11)

Comprehension Test Score 0.11* 0.09 0.13

(0.07) (0.07) (0.08)

Constant 0.69*** 0.47*** -0.07 0.46*** 0.12 -0.48 1.03*** 0.90*** 0.50

(0.02) (0.16) (0.72) (0.03) (0.19) (0.82) (0.00) (0.23) (0.73)

Observations 4,000 3,870 3,870 2,400 2,322 2,322 1,600 1,548 1,548

Number of subjects 130 130 130 130 130 130 130 130 130

Demographics No No Yes No No Yes No No Yes

Notes: The table report random-effects regression results from all four treatments. The dependent variable is the individual’s

decision turn, ranging between 0 and 5. Demographics include age, gender, major in STEM, US-born or not, subjects’ length

of staying in US, race, years in college, and experience in participating in economic experiments. Standard errors are clustered

at session level. *** p<0.01, ** p<0.05, * p<0.1.

Next, I compare the number of signals transmitted in the network which is measured as the

number of signals a subject observes when he makes a guess. It is closely related to the subjects’

waiting decisions but may reflect more on the strategic components of how subjects utilize the

network. For the same waiting turns, a person with 3 outDegrees will send out more signals than a

person with 1 outDegree. Meanwhile, a person who is connected to the information raven and waits

for one turn will receive more signals than someone who is more isolated. The number of signals

transmitted in the network can thus be seen as a measure of 1) how much the network is utilized;

2) if subjects’ utilities increase linearly with the number of signals they gathered, this measure may

help me understand people’s decision process better.

Since the waiting time deviates from Bayesian equilibrium’s prediction, the number of signals

transmitted in the network doesn’t fully follow the predictions either. I don’t observe a differ-
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ence across treatments, which means that most subjects are unable to utilize the treatment C l to

improve their informativeness. Individual regression results show that the number of signals trans-

mitted is slightly higher in the fully connected network (network NC). However, since subjects

don’t wait for sufficiently long enough turns to gather all signals from the network, the num-

ber of signals transmitted at nodes with multiple information sources is the same across different

treatments. In network C, the information spreader is the one with multiple information sources.

Their under-waiting behaviors cause most groups in C l to stay uninformative as the other three

treatments.

Table 5: Individual Number of Signals Transmitted

All Nodes Single Information Source Multiple Information Source

(1) (2) (3) (4) (5) (6) (7) (8) (9)

network C 0.64*** 0.47* 0.54** 1.11*** 0.91*** 1.00*** -0.06 -0.13 -0.09

(0.21) (0.26) (0.23) (0.21) (0.24) (0.19) (0.21) (0.31) (0.30)

low waiting cost 0.31** 0.07 0.15 0.35*** 0.11 0.14 0.26 0.09 0.22

(0.15) (0.13) (0.09) (0.10) (0.07) (0.09) (0.23) (0.23) (0.15)

network C * low Waiting cost 0.09 0.13 0.16 0.06 0.11 0.13 0.13 0.14 0.20

(0.34) (0.33) (0.29) (0.34) (0.32) (0.28) (0.37) (0.40) (0.35)

log(round) -0.01 -0.01 -0.01 -0.01 0.00 0.00

(0.03) (0.03) (0.05) (0.05) (0.04) (0.04)

Individual waiting time in round 1 0.19*** 0.14** 0.16*** 0.12** 0.25*** 0.17**

(0.05) (0.06) (0.05) (0.05) (0.06) (0.08)

Previous A’s average waiting time 0.10 0.07 0.14** 0.12* -0.01 -0.04

(0.08) (0.07) (0.07) (0.06) (0.11) (0.10)

Previous group average waiting time 0.17*** 0.16** 0.18** 0.18** 0.09 0.08

(0.06) (0.07) (0.08) (0.09) (0.10) (0.11)

Comprehension Test Score 0.20*** 0.18** 0.23**

(0.07) (0.08) (0.10)

Constant 2.21*** 1.71*** 0.80 1.44*** 0.92*** -0.37 3.36*** 2.93*** 2.62**

(0.02) (0.18) (1.02) (0.04) (0.23) (1.09) (0.00) (0.24) (1.18)

Observations 4,000 3,870 3,870 2,400 2,322 2,322 1,600 1,548 1,548

Number of subject idnum 130 130 130 130 130 130 130 130 130

Demographics No No Yes No No Yes No No Yes

Notes: The table reports random-effects regression results from all four treatments. The dependent variable is the number

of signals observed when a subject makes a guess. Demographics include age, gender, major in STEM, US-born or not,

subjects’ length of staying in US, race, years in college, and experience in participating in economic experiments. Standard

errors are clustered at session level. *** p<0.01, ** p<0.05, * p<0.1.

Although subjects at nodes with a single information source tend to gather more signals, the

additional information doesn’t help them to make more informed guesses. Consequently, I observe

the average correctness of guesses does not differ across treatments. Moreover, I don’t observe

a difference in the average payoffs across treatments. Although in both networks, having a low
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waiting cost makes the average payoffs to be higher, the difference is only statistically significant

(p-value=0.002) when the network is fully connected as shown in table 6.

Table 6: Average payoff by treatments

All nodes In-degree=1 In-degree>1

c h 104.71 102.89 107.45

(2.61) (2.8) (3.09)

c l 114.46 113.05 116.56

(1.71) (1.78) (2.03)

nc h 107.8 104.9 112.15

(2.53) (3.15) (2.98)

nc l 112.19 110.68 114.45

(1.72) (2.03) (2.46)

Result 2 The number of signals transmitted and the average payoffs in each treatment can be

ranked as follows:

(a) For all nodes, both rankings are NC h ≈ NC l ≈ C h ≈ C l.

(b) At nodes with InDegree=1, the number of signals transmitted is ranked as: NC h < NC l <

C h ≈ C l. The average payoff is ranked as: C h ≈ NC h < NC l ≈ C l.

(c) At nodes with indegree>1, both rankings are C h ≈ NC h ≈ NC l ≈ C l.

5.1.2 Within-subject Analysis

So far, I have focused more on comparing the group waiting behaviors across treatments. A nice

feature of my experiment is that I rotate subjects’ positions in the network, which allows me to

observe the same individual’s waiting choice at different nodes with 1 or multiple information

sources.

Table 7 and 8 present the subject’s waiting turns distribution across treatments, separated by

nodes with 1 or multiple information sources. The highlighted cells indicate the optimal choices

predicted by the pure strategy Bayesian equilibrium. The last three columns in the table show

how the observed waiting turns compare with the empirically optimal ones. I define an empirically

optimal choice as follows: if a choice is not predicted by the theory but fits one of the two criteria.

First, a guessing turn that is earlier than the theoretical prediction may be considered empirically

optimal if a) this subject can no longer gather more signals from waiting because his information

source(s) all made predictions too early than theoretical predictions; b) this subject holds a wrong

belief that proves to be true. For example, a subject at nodes with 1 information source in C l is

supposed to wait for 3 turns, but if he observes that both subjects at nodes A and B have guessed at

turn 0, then it is only optimal for him to guess at turn 1 since no more additional information could
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be transmitted in the network. Similarly, if this subject believes that all of his information sources

will guess at turn 0 and decides to guess at turn 0, and if this turns out to be true, his behavior

is considered empirically optimal too. Second, a guessing turn that is later than the theoretical

prediction may be considered empirically optimal if the subject believes that her information source

will wait longer than the theory predicts and she responds optimally either a) by making a guess

after observing the information source didn’t wait or b) by gathering the additional information

after waiting for appropriately long enough. An example would be in NC l where a subject at

node D wrongly believes that the subject at node A will wait longer. If A waited longer and she

was able to gather more information by waiting for 2 turns, her decision is empirically optimal. In

this classification, I hold one criterion as before: since subjects can’t see the content of the social

information before making a guess, a decision is only optimal if the expected payoff exceeds the

total waiting cost. This means that the empirically optimal choices will only deviate from the

theory in treatments with a low waiting cost.

Based on table 7, the deviation of nodes with 1 information source mostly comes from over-

waiting with one exception in treatment C l where most deviations come from under-waiting. NC h

has the highest ratio of subjects who make an optimal decision, over half (57%) decided to make a

guess at turn 0. This is consistent with the group average finding where NC h performs the closest to

the theoretical prediction. The second well-performed treatment is C l where 47% of subjects made

empirically optimal decisions. Remember C l deviates from the theoretical prediction the farthest.

Yet, after considering that not everyone in the network is as patient as the theory predicts, the

empirically optimal decisions stay around half (47%) with another 45% of the time people making

a decision too soon (maybe they didn’t see the value of a fifth signal or have wrong belief). The

other two treatments both have a majority of people who waited for too long. One is due to the

network structure and the other is due to the low waiting cost. At nodes with 1 information source,

people are more likely to over-wait. Yet in treatment C l where they are supposed to wait longer,

most people make a guess too soon.

Moving to nodes with multiple information sources, people perform more optimally in these

positions. When the waiting cost is high, people are equally likely to make a guess too soon or too

late, but overall, the proportion of people making an optimal choice is higher (around 65%) than

in treatments with a low waiting cost. When the waiting cost is low, people tend to under-wait

more frequently, suggesting that they misjudge the values of different numbers of signals.
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Table 7: Distribution of Decision Turns for nodes with 1 information source

Distribution (%) Empirically Optimal(%)

network waiting cost 0.0 1.0 2.0 3.0 4.0 5.0 Early Optimal Late

c h 22.22 28.89 45.28 3.33 0.28 22.22 77.78

c l 19.56 20.22 41.00 18.00 1.0 0.22 45.33 47.00 7.67

nc h 57.50 38.89 3.33 0.28 57.50 42.50

nc l 30.26 46.92 17.82 3.97 1.03 12.69 39.74 47.56

Notes: This table presents the subject’s waiting turns distribution across treatments at nodes with 1

information source. The highlighted cells indicate the optimal choices predicted by the pure strategy

Bayesian equilibrium. The last three columns in the table show how the observed waiting turns compare

with the empirically optimal ones.

Table 8: Distribution of Decision Turns for nodes with multiple information source

Distribution (%) Empirically Optimal(%)

network waiting cost 0.0 1.0 2.0 3.0 4.0 5.0 Early Optimal Late

c h 17.50 65.42 17.08 17.50 65.42 17.08

c l 16.50 44.17 35.17 4.17 49.83 43.67 6.50

nc h 15.42 66.67 17.08 0.83 15.42 66.67 17.92

nc l 11.35 56.35 25.00 5.19 0.96 1.15 46.92 39.62 13.46

Notes: This table presents the subject’s waiting turns distribution across treatments at nodes with

multiple information source. The highlighted cells indicate the optimal choices predicted by the pure

strategy Bayesian equilibrium. The last three columns in the table show how the observed waiting

turns compare with the empirically optimal ones.

To further understand the individual decision-making process, I run Probit regressions on an

individual’s probability of making an optimal waiting decision and the two directions of deviation.

The results are presented in table 9. The dependent variable is a dummy variable that equals to one

if a subject’s waiting time in one round is empirically optimal in columns (1)-(3), earlier than the

empirical optimal time in columns (4)-(6), or later than the empirically optimal time in columns

(7)-(9). The explanatory variables include their treatment variable and their network position in

each round, individual characteristics, time trend, and experience gained over time.

Consistent with the previous findings, subjects are less likely to make an optimal decision when

the waiting cost is low. They are more likely to make an optimal decision as they play the game for

a longer time (positively correlated with log(round)) or understand the environment better (shown

as a higher comprehension score). When they observe an equal number of signals in the previous

round, they tend to act less optimally by over-waiting more, maybe in the hope to gather more

signals to break the tie.

Moving to sub-optimal behaviors, subjects seem to systematically behave sub-optimally in re-

sponse to the treatment parameters. They tend to under-wait when the waiting cost is low, when
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they have more information sources (InDegree¿1), and especially so when combining both. However,

when they are placed at a node with higher outDegree, such that they will transmit information

to more than 1 person, they are more likely to over-wait. Individual characteristics matter in the

suboptimal behavior, especially if a subject begins as someone who waits shorter, she is more likely

to under-wait and vice versa. A subject who relies more on his private information (reflected as a

higher percentage of guesses equal to his private information) is more likely to under-wait. Accu-

mulated past experience has a different impact on individuals’ sub-optimal behaviors. If a subject’s

own private information was wrong in the previous round, he is less likely to under-wait, but not

more likely to over-wait. If a subject’s social information was helpful in the previous round, he is

less likely to under-wait and more likely to over-wait. An equal number of opposite signals observed

in the previous round makes subjects more likely to over-wait.
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Table 9: Probability of Waiting Optimally, Under-waiting, or Over-waiting

Optimal Waiting Time Under-wait Over-wait

(1) (2) (3) (4) (5) (6) (7) (8) (9)

low waiting cost -0.26 -0.26 -0.35** 0.94*** 1.35*** 1.45*** -0.47* -0.73*** -0.62***

(0.17) (0.17) (0.16) (0.08) (0.16) (0.19) (0.24) (0.24) (0.19)

InDegree>1 0.23* 0.19 0.18 0.41** 0.54*** 0.55*** -0.90*** -0.96*** -0.98***

(0.13) (0.12) (0.11) (0.19) (0.18) (0.11) (0.15) (0.14) (0.16)

InDegree>1 * network C 0.01 0.07 0.10 0.26*** 0.35** 0.44** -0.49* -0.66** -0.77***

(0.15) (0.15) (0.17) (0.08) (0.16) (0.18) (0.28) (0.28) (0.23)

out degree 0.03 0.01 0.00 -0.12*** -0.15*** -0.16*** 0.13* 0.18** 0.20***

(0.04) (0.04) (0.04) (0.05) (0.05) (0.06) (0.08) (0.07) (0.07)

log(round) 0.10*** 0.12*** -0.10* -0.10 -0.07 -0.11**

(0.04) (0.04) (0.06) (0.08) (0.06) (0.05)

Individual waiting time in round 1 0.05 0.05 -0.28*** -0.23*** 0.12*** 0.09*

(0.04) (0.04) (0.09) (0.08) (0.04) (0.05)

A’s average waiting time in m-1 -0.03 -0.02 -0.05 -0.00 0.06 0.01

(0.04) (0.03) (0.09) (0.08) (0.05) (0.05)

Group average waiting time in m-1 -0.10* -0.09 -0.02 -0.03 0.20** 0.16**

(0.06) (0.06) (0.08) (0.10) (0.08) (0.07)

Private infor was wrong in r-1 0.05 0.04 -0.13*** -0.10** 0.02 0.00

(0.05) (0.04) (0.04) (0.04) (0.05) (0.05)

Social infor was helpful in r-1 -0.05 -0.07 -0.61*** -0.53*** 0.51*** 0.46***

(0.11) (0.10) (0.14) (0.15) (0.08) (0.08)

Equal number of signals in r-1 -0.33*** -0.32*** -0.27 -0.23* 0.59*** 0.57***

(0.10) (0.10) (0.17) (0.14) (0.09) (0.08)

% of guesses = private infor -0.79 3.93*** -2.04***

(0.74) (0.99) (0.78)

Comprehension test score 0.12** -0.29*** 0.01

(0.06) (0.11) (0.08)

Constant -0.14 -0.16 -0.77 -1.31*** -0.52** -0.88 0.03 -0.70*** 1.13

(0.21) (0.24) (1.00) (0.19) (0.26) (1.31) (0.27) (0.26) (1.38)

Observations 4,000 3,600 3,600 2,344 2,097 2,097 4,000 3,600 3,600

Demographics No No Yes No No Yes No No Yes

Notes: The table report Probit regression results from all four treatments. In column (1) - (3), the dependent variable is

a dummy variable indicating whether the subject’s waiting time is empirically optimal. In column (4)- (6), the dependent

variable is a dummy variable that equals to 1 if the subject doesn’t wait as long as the empirically optimal time. If the

optimal waiting turn is 0, then this variable is equal to null. In column (7)-(9), the dependent variable is equal to 1 if

the subject waits longer than the optimal decision turns. Control variables include: 1) treatment-related: the waiting cost,

the network structure, and the positions a subject takes at the decision round; 2) experience gained in the experiment:

how many rounds a subject has played, a subject’s first round waiting time which may indicate his tendency of preferring

to over-wait or under-wait, the previous round waiting time, and the information experienced in the previous round; 3)

individual characteristics such as how many times the subject will make a guess coinciding with his private information, the

comprehension test score and other demographic variables. Demographics include age, gender, major in STEM, US-born

or not, subjects’ length of staying in US, race, years in college, and experience in participating in economic experiments.

Standard errors are clustered at session level. *** p<0.01, ** p<0.05, * p<0.1.
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5.2 Possible explanations for the observed deviations

So far, I have shown that subjects don’t behave as the pure-strategy Bayesian equilibrium predicts.

What can explain the observed deviations? In this section, I attempt to use a Quantal response

equilibrium model and the strategy frequency estimation methods to better explain the observed

behaviors.

5.2.1 Quantal Response Equilibrium Model Prediction (QRE)

In a somewhat complicated environment like this, subjects may make various mistakes that cause

a deviation from the theoretical prediction. If I assume that the observed deviations come from

subjects’ idiosyncratic preference shocks, it is possible to calculate the quantal response equilibrium

(QRE), proposed by McKelvey and Palfrey (1995, 1998), for my treatments. Instead of always

choosing the best strategies, subjects are assumed to choose strategies with higher expected payoffs

with high probability that follows a logistic distribution. More details about how to derive the

QREs can be found in appendix Appendix A.2. The average waiting turns by treatments and for

nodes with one or multiple information sources can be illustrated in the following figure:

Figure 5: QRE Prediction of Average Waiting Turns by Treatment

Notes: Panel shows the group average of waiting turns by treatment predicted by Quantal Response

Equilibrium when the game is represented in the extensive form. The expected payoffs use proper

Bayesian updating rule and are standardized to be 1 when a subject makes a guess at turn 0.

Although the QRE converges to the pure strategy Bayesian perfect equilibrium, the path it

takes is quite different. When the rationality parameter _ is small enough (less than 10), subjects

are not going to differentiate their guessing times at different nodes. As the rationality parameter

becomes larger, the average waiting time may be ranked as: NC h = C h < NC l < C l. The

ranking is the same for nodes with one or multiple information sources. When the rationality
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parameter is sufficiently large (over 100), the QRE predictions meet the pure strategy Bayesian

perfect equilibrium.

To estimate the rationality parameter in the experiment, I follow the equilibrium correspondence

approach. It takes two steps: first, I calculate the logit QRE correspondence for each treatment.

Then I search for the value of _ for which the observed distribution of choices is the closest to the

logit QRE. let 𝑝𝑛𝑡 (_) denote the probability of a subject at node 𝑛 decide at turn 𝑡, let 𝑓𝑛𝑡 denote

the empirical choice frequencies, for each given _, the log likelihood function can be expressed as:

𝐿𝑜𝑔𝑙 (_, 𝑓𝑛𝑡 ) =
∑︁

𝑛∈{A,B,C,D,E}

5∑︁
𝑡=0

𝑓𝑛𝑡 𝑙𝑜𝑔(𝑝𝑛𝑡 (_))

The maximum-likelihood estimate is given by _̂ = 𝑎𝑟𝑔𝑚𝑎𝑥_𝑙𝑜𝑔𝐿 (_, 𝑓𝑛𝑡 ). I conduct the same

exercise on three sets of logit QRE correspondences, namely, 1) QRE derived from the normal form

representation of my environment, 2) QRE derived from the extensive form representation; 3) QRE

derived from the extensive form representation and assume an incorrect linear probability updating

rule.

The estimated results are presented in table 10. Assuming all agents have the same rationality

parameters, the _ rationality parameter is higher when I derive the QRE predictions using the

extensive form instead of a normal form. It suggests that subjects incorporate the additional

information updated in each turn dynamically. Furthermore, when I change the expected payoff

from the Bayesian updating rule (the statistically correct rule) to an incorrect updating rule (simply

assuming that subjects assign a linear relationship such that more signals mean a higher probability

to make a correct guessing), the QRE estimation yields a higher _. If I assume the same rationality

parameter within a treatment, as reported in the last 8 columns of table 10, the estimated rationality

parameter differs largely across treatments. The normal form representation seems to fit the data

better when the waiting cost is high. In comparison, the extensive form representation fits the

observed behaviors better when the waiting cost is low. This seems to suggest that subjects are

more likely to consider the dynamic information transmissions within a network when the waiting

cost is low.

Table 10: QRE Estimation

Pooled NC l NC h C l C h

Models _ 𝑙𝑜𝑔𝐿 _ 𝑙𝑜𝑔𝐿 _ 𝑙𝑜𝑔𝐿 _ 𝑙𝑜𝑔𝐿 _ 𝑙𝑜𝑔𝐿

Normal-form 6.48 -6583.4 27.84 -2142.1 7.93 -746.3 3.39 -2663 5.98 -907.9

Normal-form (linear) 7.32 -6522 32.74 -2028.2 10.12 -698.5 3.53 -2664.2 5.98 -908.8

Extensive-form 10.97 -6405 20.138 -2016.5 4.15 -790.7 13.99 -2232.9 0.1 -1039.9

Extensive-form (linear) 12.90 -6157.2 30.19 -1796.6 8.26 -750.9 14.57 -2250.8 0.93 -1038.7
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5.2.2 Strategy Frequency Estimation

Regardless of which form the game is represented, the quantal response equilibrium predicts almost

no difference between treatment NC h and C h, which doesn’t fit the experimental results. Alter-

natively, I consider subjects adopting different stopping strategies other than the optimal Bayesian

pure strategy. Based on previous literature, I summarize several possible strategies that have been

identified in previous social learning literature. The rules I consider in the estimations are:

1. Empirically optimal(Empirical Optimal): the decisions follow the pure strategy Bayesian

equilibrium predictions and are responsive to others’ decisions.

2. Empirical optimal without cost (EmpiricalOptimal Nocost): the decisions follow the pure

strategy Bayesian equilibrium predictions and are not responsive to others’ decisions. Al-

though subjects understand the value brought by the additional signals, they focus on in-

creasing the probability of guessing correctly without considering the cost incurred.

3. More is better (More Better): Corresponding to the excessive information acquisition found

in many waiting games (Kübler and Weizsäcker, 2004; Kraemer et al., 2006; Nelson et al.,

2010; Çelen and Hyndman, 2012; Eyster et al., 2015), this rule says that subjects will try

to gather as many signals as possible. Subjects are responsive to their (direct and indirect)

information sources’ decisions, namely, if they observe someone has made a prediction, they

will adjust by reducing their waiting turns.

4. More is better naive (More Better Naive): Similar to the strategy of more is better heuristic.

The difference is that subjects are not responsive to their (direct and indirect) information

sources’ decisions.

5. Lone wolfs (Lone Wolf): Corresponding to the “Follow your own signal” or overconfidence

heuristics uncovered in Huck and Oechssler (2000); Duffy et al. (2019, 2021), this rule repre-

sents subjects who never wait and always decide at turn 0.

6. Always Wait for one turn (Always 1Turn ): It is a rule of thumb heuristic that seems to be

especially relevant in my environment. Corresponding to subjects’ over-weighting of social

information (March and Ziegelmeyer, 2018; Goeree and Yariv, 2015; Eyster et al., 2015; Çelen

and Hyndman, 2012, this rule represents subjects who always wait at turn 1, regardless of

their positions and the number of signals they will gather.

More details about how subjects following different strategy rules should behave at different

nodes in each treatment are shown in appendix Appendix A.5, since I rotate subjects’ positions

in the network, these rules predict different behaviors at different nodes in the network, combined

with the history each node is facing.

The strategy frequency method follows the approach proposed by Dal Bó and Fréchette (2011)

and widely used in many literature, Romero and Rosokha (2018, 2019); Rosokha and Wei (2020).
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It is a finite-mixture estimation approach that helps estimate the proportion of strategies used in

the experiment. More technical details can be found in Romero and Rosokha (2018). If I restrict

the strategies to the above-mentioned six rules, the estimated results are presented below:

Table 11: SFEM results

All NC-l NC-h C-l C-h

𝛽 0.7381 0.7905 0.8264 0.6849 0.644

Always 1Turn 0.2621 0.3184 0.2475 0.1182 0.4575

Empirical Optimal 0.1946 0 0.4263 0.3098 0.0862

Lone Wolf 0.1732 0.1827 0.1296 0.1946 0.1418

More Better 0.1643 0.1839 0.1019 0.2645 0.0498

EmpiricalOptimal Nocost 0.1052 0.0488 0.0946 0.054 0.2647

More Better Naive 0.1007 0.2661 0 0.0588 0

𝑙𝑜𝑔(𝐿) -2473.06 -700.608 -303.383 -996.307 -410.871

Notes: The bold cell in each column indicates the strategy that is the most commonly used. 𝛽 indicates

the probability of a subject adopting a certain strategy.

In most treatments, the most common strategy is “Always wait for 1 turn” or “Empirically

optimal”. Consistent with other findings in the network related experiments, although some sub-

jects are able to make optimal choices, there are a substaintial proportion of subjects may adopt

some kind of heuristics in decision makings. Incorporating these heuristics in the theory buildings

may help increase the predictive power of the models. In sequential environments, the first turn of

waiting is crucial to subjects. Having some kind of social information, regardless of how useful it

may be, gives subjects a higher utility.

5.3 Do people utilizes the information correctly?

Overall, subjects utilize the information they gathered well, probably because this is a rather

simple decision problem. As long as subjects understand that they observe the signals of others,

a correct prediction rule is to follow the majority of the signals. A mistake is to make a guess

against the majority of the signals. As shown in table 12, the compliance rate of following the

private information is close to 100% when both the private and the social information suggest the

same state. When the social information is in the opposite direction of the private information

but over-powers the private information, the more signals the counter-evidence has, the less likely

a subject will continue following his private information. However, when the number of opposite

signals is equal, subjects are slightly more likely to follow their own private information. This

finding coincides with what Duffy et al. (2019) found where subjects are able to comply with the

information they gathered most of the time.
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Table 12: Private Information Compliance Rate

Number of Signals Collected Social Same Social Opposite and More Social Opposite and Equal

1 92.1% (936) - -

2 99.5% (548) - 63.5% (384)

3 97.7% (515) 4.4% (135) -

4 97.8% (579) 3.5% (113) 59.2% (240)

5 98.5% (404) 3.4% (146) -

Total 96.4% (2982) 3.8% (394) 61.9% (624)

Notes: The table shows the percentage of guesses following subjects’ private information. The first column

shows the compliance rate when the collected social information indicates the same state as the private

information. The second and third columns show when the social information indicates the opposite state

as the private information. The second column is when the social information contains more signals of the

opposite state than the private information. The third column is when there is an equal number of signals of

both states. The numbers in the bracelet show the frequency of each cell.

6 Discussion

The goal of this paper is to test whether subjects can make optimal decisions in a directed network

as pure strategy Bayesian equilibrium predicts. Consistent with previous findings, I observe some

deviations from the theories. Individual analysis suggests that the deviations cannot be fully

explained by the trembling hand effect or mistakes or a failure to apply proper Bayesian updating

rules. It seems that although some subjects can make optimal decisions, many others tend to

adopt very naive decision rules, such as always-wait-for-1-turn in my environment. Documenting

the heuristics and less sophisticated decision rules and incorporating the heterogeneity among

subjects may help theorists develop better models. More importantly, when people who use less

sophisticated decision rules occupy an important position in the communication network, complete

social learning may be impeded. Further research may pay attention to whether people with

different decision rules could self-sort into different positions in the network, for example, how

the endogeneity of network position and subject’s heterogeneity may correlate with each other.

In a self-forming or constantly evolving network, if people with more sophisticated decision rules

can choose their positions and place themselves in the information maven or information spreader

positions, the learning process may speed up.
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Weizsäcker, G. (2010). Do we follow others when we should? a simple test of rational expectations.

American Economic Review 100 (5), 2340–60.

Ziegelmeyer, A., F. Koessler, J. Bracht, and E. Winter (2010). Fragility of information cascades:

an experimental study using elicited beliefs. Experimental Economics 13 (2), 121–145.

30



Ziegelmeyer, A., K. B. My, J.-C. Vergnaud, M. Willinger, et al. (2005). Strategic delay and rational

imitation in the laboratory. Max-Planck-Inst. for Research into Economic Systems, Strategic

Interaction Group.

Appendix A Online Appendix

Appendix A.1 More details about the model

Pure-Strategy Perfect Bayesian Equilibrium An action strategy profile 𝜎𝑛,∗ is a pure-strategy

perfect Bayesian equilibrium of the information exchange game Γ𝑖𝑛 𝑓 𝑜 (𝐺𝑛) if for every 𝑖 ∈ 𝑁𝑛 and

turn t, and given the strategies of other subjects 𝜎
𝑛,∗
−𝑖 , subject i’s action 𝜎

𝑛,∗
𝑖,𝑡

obtains expected

payoff equal to the value function of subject i at turn t, 𝑈𝑛
𝑖,𝑡
(𝐼𝑛

𝑖,𝑡
). We denote the set of equilibria

of this game by 𝐼𝑁𝐹𝑂 (𝐺𝑛).
In this section, I provide the optimal stopping rule for each node in the network and define the

Nash Equilibrium for different waiting costs.

For a subject who is randomly assigned to a node i in a directed network, the maximum number

of additional signals that can be observed in each period equals to the 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒𝑛
𝑖,𝑘

of node i.For

signals that can be observed in period 2 or more, whether the signal can be transmitted or not also

depends on the behaviors of the middle nodes.

In a 5-node network, the number of possible incoming signals has a maximum limit equal to 4. In

my environment, the optimal decision rule is a stopping rule that balances the waiting cost and the

expected payoff. The expected payoff depends on the probability of making a correct guess given a

certain number of signals. Thus, it will be helpful to calculate the probability of making a correct

guess given different numbers of signals.

Let 𝑞 > 1
2 denote the informativeness of the signals.

𝑃(correct guess|1 signal) = 𝑞

We assume a rational subject will randomly pick one state if the two signals are contradictory.

𝑃(correct guess|2 signals) =
(2
2

)
𝑞2 +

(2
1

)
𝑞 ∗ (1 − 𝑞) ∗ 1

2 = 𝑞

𝑃(correct guess|3 signals) =
(3
3

)
𝑞3 +

(3
2

)
𝑞2 ∗ (1 − 𝑞) = 𝑞2(3 − 2𝑞)

𝑃(correct guess|4 signals) =
(4
4

)
𝑞4 +

(4
3

)
𝑞3(1 − 𝑞) +

(4
2

)
𝑞2(1 − 𝑞)2 ∗ 1

2 = 𝑞2(3 − 2𝑞)
𝑃(correct guess|5 signals) =

(5
5

)
𝑞5 +

(5
4

)
𝑞4(1 − 𝑞) +

(5
3

)
𝑞3(1 − 𝑞)2 = 𝑞3(6𝑞2 + 10 − 15𝑞) For 𝑞 > 1

2 ,

𝑞 < 𝑞2(3 − 2𝑞) < 𝑞3(6𝑞2 + 10 − 15𝑞).

From the calculation, we can see that there are three levels of expected payoff, separately conditional

on 1 or 2; 3 or 4; and 5 independent private signals. The signal threshold thus is in the set 1,3,5

for a 5-Node fully connected directed network.
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Appendix A.1.1 Network (a)

Firstly, start from the ”social connector”, node A: its length-1 neighbor is E, 𝐵𝑛
𝐴,1 = {𝐸}. Since

E is relatively isolated, A doesn’t have neighbors with higher length. The maximum number of

signals E can observe by waiting is 2, which doesn’t increase the probability of making a correct

guess. Waiting doesn’t increase the expected payoff. When the waiting cost is positive, A should

always decide at period 0. The optimal signal threshold can be expressed as: 𝑘𝑛
𝐴,𝑡

= 1(𝑡 = 0)
if cost 𝑐 ≥ 0Secondly, consider the ”information maven”, node B: its length-1 neighbors are A, C,

and D, 𝐵𝑛
𝐵,1 = {𝐴,𝐶, 𝐷}; its length-2 neighbor is E, 𝐵𝑛

𝐵,2 = {𝐸}. If node B waits for 1 period, he

will obtain 3 more additional private signals, which can increase the expected payoff. Waiting for

2 periods can increase B’s expected payoff if A waits at least 1 period, in which case B can observe

all five private signals. The optimal signal threshold is thus:

𝑘𝑛𝐵,𝑡 =


1 if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3 if cost 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5 if cost 𝑐 < 1
2𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 and A waits at least 1 periods

(2)

, where 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) = 3𝑞2 − 2𝑞3 − 𝑞, 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔) = 6𝑞5 + 10𝑞3 − 15𝑞4 − 3𝑞2 − 2𝑞3 − 𝑞.

However, based on the above analysis, a rational subject at B should expect that a rational subject

at A will guess at period 0. Thus the maximum number of private signals can be observed in this

network is only 4, and the optimal signal threshold is adjusted to:

𝑘𝑛𝐵,𝑡 =


1(𝑡 = 0) if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3(𝑡 = 1) if cost 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓
(3)

, where 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) = 3𝑞2 − 2𝑞3 − 𝑞, 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔) = 6𝑞5 + 10𝑞3 − 15𝑞4 − 3𝑞2 − 2𝑞3 − 𝑞.

Next, for node C: its length-1 neighbors are A and B, 𝐵𝑛
𝐶,1 = {𝐴, 𝐵}; its length-2 neighbors are D

and E, 𝐵𝑛
𝐶,2 = {𝐷, 𝐸}. If A waits for 1 period, E’s private signals will be communicated to node C.

If B waits for 1 period, D’s private signals will be communicated to node C. The maximum number

of private signals C can observe is 5. The signal threshold for node C can be expressed as

𝑘𝑛𝐶,𝑡 =


1 if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3 if cost 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5 if cost 𝑐 < 1
2𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 and both A and B wait at least 1 period

(4)

, where 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) = 3𝑞2 − 2𝑞3 − 𝑞, 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔) = 6𝑞5 + 10𝑞3 − 15𝑞4 − 3𝑞2 − 2𝑞3 − 𝑞.

Again, a rational subject at C should know that A will guess at period 0 and B’s optimal decision
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rule. Thus the rational decision rule for C is adjusted to:

𝑘𝑛𝐶,𝑡 =


1(𝑡 = 0) if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3(𝑡 = 1) if cost 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓 (as B will wait 1 period)
(5)

, where 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) = 3𝑞2 − 2𝑞3 − 𝑞.

For node D: its length-1 neighbor is A, 𝐵𝑛
𝐷,1 = {𝐴}; its length-2 neighbor is node E, 𝐵𝑛

𝐷,2 = {𝐸}. If
A waits for 1 period, the private signal of E will be communicated to D. The maximum number of

private signals D can observe is 3. The optimal signal threshold depends on the trade-off between

the increased expected payoff and the waiting cost.

𝑘𝑛𝐷,𝑡 =


1 if cost 𝑐 ≥ 1

2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3 if cost 𝑐 < 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓 and A waits at least 1 period

(6)

, where 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) = 3𝑞2 − 2𝑞3 − 𝑞.

However, as stated above, a rational subject at A will guess at period 0, thus the only rational

decision for D is to guess at period 0 as well. The threshold is adjusted to:

𝑘𝑛𝐷,𝑡 = 1(𝑡 = 0) if cost 𝑐 ≥ 0 (7)

, where 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) = 3𝑞2 − 2𝑞3 − 𝑞.

Lastly, for node E: its length-1 neighbor is node A, 𝐵𝑛
𝐸,1 = {𝐴}. Since A has only one incoming

edge from E, E doesn’t have higher length incoming neighbors. Thus, the maximum number of

signals E can observe by waiting is 2, which doesn’t increase the probability of making a correct

guess. Waiting doesn’t increase the expected payoff. When the waiting cost is positive, E should

always decide at period 0. Thus, the signal threshold can be expressed as:

𝑘𝑛𝐸,𝑡 = 1(𝑡 = 0) if cost 𝑐 ≥ 0 (8)

Appendix A.1.2 Network (b)

Firstly, start from the ”social connector”, node A: its length-1 neighbors are B and E, 𝐵𝑛
𝐴,1 = {𝐵, 𝐸};

its length-2 neighbors are C and D, 𝐵𝑛
𝐴,2 = {𝐶, 𝐷}. If B waits for 1 period, A will obtain 2 more

additional private signals, which can increase the expected payoff. The optimal signal threshold is

thus:

𝑘𝑛𝐴,𝑡 =


1 if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3 if cost 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5 if cost 𝑐 < 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 and B waits at least 1 period

(9)
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For now, I can’t adjust the optimal rules without knowing B’s decision rule, so will come back

later.

Secondly, consider the ”information maven”, node B: its length-1 neighbors are A, C, and D,

𝐵𝑛
𝐵,1 = {𝐴,𝐶, 𝐷}; its length-2 neighbor is E, 𝐵𝑛

𝐵,2 = {𝐸}. If node B waits for 1 period, he will obtain

3 more additional private signals, which can increase the expected payoff. Waiting for 2 periods

can increase B’s expected payoff if A waits at least 1 period, in which case B can observe all five

private signals. The optimal signal threshold is thus:

𝑘𝑛𝐵,𝑡 =


1 if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3 if cost 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5 if cost 𝑐 < 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 and A waits at least 1 periods

(10)

, where 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) = 3𝑞2 − 2𝑞3 − 𝑞, 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔) = 6𝑞5 + 10𝑞3 − 15𝑞4 − 3𝑞2 − 2𝑞3 − 𝑞.

Since A and B make decisions interdependently, I can now adjust their rational decision rule by

the level of waiting cost. When the waiting cost is very large (𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓), neither nodes
will wait. When the waiting cost is relatively small(𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓),both A and B will wait at

least 1 period. Knowing that, their optimal signal thresholds can be adjusted into:

𝑘𝑛𝐴,𝑡 =


1(𝑡 = 0) if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3(𝑡 = 1) if cost 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔) ≤ 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5(𝑡 = 2) if cost 𝑐 < 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 (as B will wait at least 1 period)

(11)

𝑘𝑛𝐵,𝑡 =


1(𝑡 = 0) if cost 𝑐 ≥ 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3(𝑡 = 1) if 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 ≤ 𝑐 < 𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5(𝑡 = 2) if cost 𝑐 < 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 (as A will wait at least 1 periods)

(12)

Next, for node E: its length-1 neighbor is node A, 𝐵𝑛
𝐸,1 = {𝐴}; its length-2 neighbor is B, 𝐵𝑛

𝐸,2 = {𝐵};
its length-3 neighbors are C and D, 𝐵𝑛

𝐸,3 = {𝐶, 𝐷}. Waiting for 1 period does not increase the

expected payoff, but waiting for 2 periods or 3 periods will increase the expected payoff. Since

node A is only directed to node D, for node E to obtain A’s signal, node D needs to wait for at

least 1 period. Thus, the signal threshold can be expressed as:

𝑘𝑛𝐸,𝑡 =


1 if cost 𝑐 ≥ 1

2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3 if cost 𝑐 < 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓 and A waits at least 1 period

5 if cost 𝑐 < 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 and B waits at least 1 period; A waits at least 2 periods

(13)
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Based on A and B’s optimal decision rules, I can now adjust E’s optimal decision rule to:

𝑘𝑛𝐸,𝑡 =


1(𝑡 = 0) if cost 𝑐 ≥ 1

2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5(𝑡 = 3) if cost 𝑐 < 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓 (as B will wait at least 1 period and A will wait at least 2 periods)

(𝑏′
𝐸
)

In my experiment, the parameters chosen ensure that 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔) < 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔) 4. Thus a

rational subject at node E will only have two optimal thresholds:

𝑘𝑛𝐸,𝑡 =


1(𝑡 = 0) if cost 𝑐 ≥ 1

2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5(𝑡 = 3) if cost 𝑐 < 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓 (as B will wait at least 1 period and A will wait at least 2 periods)

(14)

Lastly, consider node C and D: These two nodes are identical in the sense they are both connected

to B and have one incoming edge from A. Looking at C for instance. Its length-1 neighbor is node

A, 𝐵𝑛
𝐶,1 = {𝐴}; length-2 neighbors are nodes B and E, 𝐵𝑛

𝐶,2 = {𝐵, 𝐸}; its length-3 neighbor is node

D, 𝐵𝑛
𝐶,3 = {𝐷}. Waiting for 1 period does not increase the expected payoff, but waiting for 2 periods

or 3 periods will increase the expected payoff. If A waits at least 1 period, waiting for 2 periods

will allow C to observe 2 additional private signals from B and E. If A waits for 2 periods, and B

waits for 1 period, then waiting for 3 periods will let C observe all private signals. The optimal

thresholds for C (also D are:

𝑘𝑛
𝐶 (𝐷) ,𝑡 =


1 if cost 𝑐 ≥ 1

2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

3 if cost 𝑐 < 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5 if cost 𝑐 < 𝑃(5𝑠𝑖𝑔 − 3𝑠𝑖𝑔)𝜓 , A waits at least 2 periods and B waits at least 1 period

(15)

Combining the optimal decision rules for A and B, a rational subject at node C or D should behave

with the following thresholds:

𝑘𝑛
𝐶 (𝐷) ,𝑡 (𝑘

𝑛
𝐷,𝑡 ) =


1(𝑡 = 0) if cost 𝑐 ≥ 1

2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓

5(𝑡 = 3) if cost 𝑐 < 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓 (as A will wait at least 2 periods and B will wait at least 1 period)

(16)

It turns out a rational subject will behave the same at C, D, and E for different level of waiting

costs in network (b).

4In my experiment, 𝑞 = 0.7, 𝜓 = 100, 1
2𝑃(3𝑠𝑖𝑔 − 1𝑠𝑖𝑔)𝜓 = 1

2 (3𝑞
2 − 2𝑞3 − 𝑞) (𝜓) = 4.2, P(5 sig-3sig)𝜓 = (6𝑞5 + 10𝑞3 −

15𝑞4 − 3𝑞2 − 2𝑞3) (𝜓) = 5.292
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Appendix A.2 More Details about the QRE Prediction and Estimation

For the Quantal response equilibrium, the main assumption is that agents have idiosyncratic

preference shocks. Following a similar approach adopted by Choi et al. (2012), at each turn

𝑡 = {0, 1, 2, 3, 4, 5}, subjects at node 𝑛 have two actions 𝑥𝑛
𝑖,𝑡

∈ {wait, guess} and the corresponding

utility function is defined as 𝑈𝑛
𝑖𝑡
(𝑥𝑛

𝑖,𝑡
) = _𝑖𝑡𝜋

𝑛
𝑖𝑡
+𝜖𝑖𝑡 , where 𝜋𝑛𝑖𝑡 represents the expected payoff of taking

action 𝑥𝑛
𝑖,𝑡

at turn 𝑡 at node 𝑛 and coefficient _𝑖𝑡 shows the sensitivity of subject 𝑖 to choose action

𝑥𝑛
𝑖,𝑡

with the expected payoff. The random variable 𝜖𝑖𝑡 stands for subject 𝑖’s preference shock for

action 𝑥𝑛
𝑖,𝑡
, which is assumed to be i.i.d. across turns and at different nodes. When the action 𝑥𝑛

𝑖,𝑡
is

{guess}, the expected payoff is equal to the expected payoff of making a guess given the number of

signals collected at turn 𝑡. When the action 𝑥𝑛
𝑖,𝑡

is {wait}, the expected payoff is assumed to be the

maximal amount of expected payoff among all future turns. See table A-1 to denote the expected

payoff of each turn at different nodes in the network.

In the experiment, subjects can wait for up to 5 turns. I calculate the QRE based on the

extensive form of the game. Let 𝑝𝑛
𝑖,𝑡

denote the probability of subject 𝑖 at node 𝑛 ∈ {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}
guess at turn 𝑡. Let 𝜋𝑛

𝑖,𝑡
(guess) denote the expected payoff of guessing at turn 𝑡. The expected

payoff of waiting at turn t becomes 𝜋𝑛
𝑖,𝑡
(wait) = max{𝜋𝑛

𝑖,𝑡+1(guess), 𝜋𝑛𝑖,𝑡+2𝑐, ..., 𝜋𝑛𝑖,𝑇=5(guess)}. At each
turn, a subject 𝑖 at node 𝑛 assign the probability between waiting and guessing by applying logit

rules to the expected payoffs :

𝑝𝑛𝑖,𝑡 (_) =
𝑒
_𝜋𝑛

𝑖,𝑡 (wait)
𝑒
_𝜋𝑛

𝑖,𝑡 (wait) + 𝑒
_𝜋𝑛

𝑖,𝑡 (guess)

Further let 𝑝𝑛,𝑡 denote a representative subject’s probability of guess at turn 𝑡 at node 𝑛, where

𝑝𝑛,𝑡 =
∏𝑡−1

𝜏=0(1 − 𝑝𝑛𝜏)𝑝𝑛𝑡 . The probability of a representative subject guessing at turn 𝑡 at node 𝑛

depends on the _ parameter.

Table A-1: Expected Payoffs by Nodes

Waiting Turns network NC network C

A/E B C D A B C/D/E

0 𝜋(1)
1 𝜋(2) − 𝑐 𝜋(4) − 𝑐 𝜋(3) − 𝑐 𝜋(2) − 𝑐 𝜋(3) − 𝑐 𝜋(4) − 𝑐 𝜋(2) − 𝑐

2 𝜋(2) − 2𝑐 𝜋𝐵 − 2𝑐 𝜋𝐶 − 2𝑐 𝜋𝐷 − 2𝑐 𝜋𝐴 − 2𝑐 𝜋𝐵 − 2𝑐 𝜋𝐸 − 2𝑐

3 𝜋(2) − 3𝑐 𝜋𝐵 − 3𝑐 𝜋𝐶 − 3𝑐 𝜋𝐷 − 3𝑐 𝜋𝐴 − 3𝑐 𝜋𝐵 − 3𝑐 𝜋𝐸′ − 3𝑐

4 𝜋(2) − 4𝑐 𝜋𝐵 − 4𝑐 𝜋𝐶 − 4𝑐 𝜋𝐷 − 4𝑐 𝜋𝐴 − 4𝑐 𝜋𝐵 − 4𝑐 𝜋𝐸′ − 4𝑐

5 𝜋(2) − 5𝑐 𝜋𝐵 − 5𝑐 𝜋𝐶 − 5𝑐 𝜋𝐷 − 5𝑐 𝜋𝐴 − 5𝑐 𝜋𝐵 − 5𝑐 𝜋𝐸′ − 5𝑐

where 𝜋𝐵 = 𝑝𝐴0𝜋(4) + (1 − 𝑝𝐴0)𝜋(5), 𝜋𝐶 = 𝑝𝐴0𝑝𝐵0𝜋(3) + [(1 − 𝑝𝐴0)𝑝𝐵0 + (1 − 𝑝𝐵0)𝑝𝐴0)]𝜋(4) +
(1− 𝑝𝐴0) (1− 𝑝𝐵0)𝜋(5), 𝜋𝐷 = 𝑝𝐴0𝜋(2) + (1− 𝑝𝐴0)𝜋(3), 𝜋𝐴 = 𝑝𝐵0𝜋(3) + (1− 𝑝𝐵0)𝜋(5), 𝜋𝐸 = 𝑝𝐴0𝜋(2) +
(1 − 𝑝𝐴0)𝜋(3), 𝜋𝐸′

= 𝑝𝐴0𝜋(2) + [(𝑝𝐴1 + (1 − 𝑝𝐴0 − 𝑝𝐴1)𝑝𝐵0]𝜋(3) + (1 − 𝑝𝐴0 − 𝑝𝐴1) (1 − 𝑝𝐵0)𝜋(5).

36



Appendix A.2.1 Normal Form Predictions and Estimation

The result of QRE in normal form assumes that subjects pre-assign a probability of guessing at

each turn 𝑡 ∈ [0, 5] and doesn’t change the probability across turns even though the information set

may be updated. The path shows a very similar pattern as in the extensive form. When _ is very

small, the average waiting turns is higher than the ones in the extensive form because I assume a

representative subject assigns equal probability to guessing from turn 𝑡 = 0 to turn 𝑡 = 5.

Figure A-1: QRE Prediction of Average Waiting Turns by Treatment

Notes: Panel shows the group average of waiting turns by treatment predicted by Quantal Response

Equilibrium when the game is represented in the normal form.

Table A-2: QRE Estimation by Treatment

NC-l NC-h C-l C-h

All 30 rounds
_ 15.167 8.262 3.390 5.976

𝑙𝑜𝑔𝐿 -2261.5 -751.0 -2663.0 -908.0

Later 15 rounds
_ 67.867 8.959 3.390 5.976

𝑙𝑜𝑔𝐿 -1250.7 -383.8 -1419.7 -483.7

Table A-3: QRE Estimation

NC-l NC-h C-l C-h

multiple information sources
_ 8.959 6.748 8.959 9.329

𝑙𝑜𝑔𝐿 -913.1 -327.4 -1026.5 -324.8

single information sources
_ 11.895 8.959 4.322 6.223

𝑙𝑜𝑔𝐿 -1352.1 -442.2 -1589.6 -542.4
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Appendix A.3 Administration

Table A-4: Summary of Experiment Administration

Treatment Demographics

Session Date Network Type Waiting Cost Earnings % Male % STEM % U.S. Borned

0 03/19/2021 NC L 24.3 70.0 70.0 60.0

1 04/09/2021 NC L 25.5 50.0 60.0 60.0

2 04/09/2021 NC L 24.5 50.0 60.0 90.0

3 04/09/2021 NC L 25.4 30.0 50.0 60.0

4 04/13/2021 NC H 24.1 40.0 50.0 60.0

5 04/13/2021 NC H 25.0 70.0 60.0 70.0

6 04/28/2021 C H 24.4 60.0 80.0 60.0

7 04/28/2021 C H 21.7 70.0 90.0 20.0

8 04/29/2021 C L 23.8 20.0 60.0 70.0

9 04/29/2021 C L 24.8 60.0 40.0 70.0

10 04/29/2021 C L 25.0 40.0 60.0 70.0

11 12/03/2021 C L 25.0 60.0 50.0 70.0

12 12/03/2021 C L 25.6 70.0 70.0 70.0

Notes: % STEM denotes proportion of participants that are in STEM majors. % US HS denotes the

proportion of participants that completed high-school in the US.
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Appendix A.4 Additional Results

Appendix A.4.1 Number of Signals Transmitted

Figure A-2: Number of Signals Gathered by Treatment

Notes: Panel shows the group average of waiting turns by treatment, the shades indicate 90% bootstrap

confidence interval.

Appendix A.4.2 Accuracy

Table A-5: Average accuracy by treatments

All nodes In-degree=1 In-degree>1

c h 0.74 0.73 0.75

(0.03) (0.03) (0.03)

c l 0.76 0.75 0.78

(0.02) (0.02) (0.02)

nc h 0.73 0.69 0.8

(0.03) (0.03) (0.03)

nc l 0.73 0.72 0.76

(0.02) (0.02) (0.02)

Notes:

Appendix A.5 Details about Decisions Rules

Appendix A.5.1 Empirically optimal turns

I define a subject’s empirically optimal behaviors as: 1) they behave as the pure-strategy Beyesian

Nash equilibrium predicts; 2) they respond to their information sources’ decisions, namely, if they
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observe that their information sources stop gathering information early, they will early too; 3) they

may hold incorrect belief at turn 0 and stop gathering information early or late, but the decision

is only optimal when they correctly predict node A’s behavior. The following decision turns are

classified as empirically optimal. Let 𝑥𝑒∗
𝑖

denote the empirical optimal decision turns at node 𝑖 and

𝑥𝑖 denote the realized decision turns in the group at node 𝑖:

Table A-6: Empirical Optimal Decisions

Network Single information source Multiple information source

NC

𝑥𝑒∗
𝐴/𝐸 = 0 for 𝑐𝐿 and 𝑐𝐻

x𝑒∗
𝐷

=


0 for 𝑐𝐿 and 𝑐𝐻

1 if 𝑐𝐿 and 𝑥𝐴 = 0

2 if 𝑐𝐿 and 𝑥𝐴 ≥ 1

𝑥𝑒∗
𝐶

=


1 if 𝑐𝐻 or ( 𝑐𝐿 and (𝑥𝐴 = 0 or 𝑥𝐵 = 0))

2 if 𝑐𝐿 and 𝑥𝐴 ≥ 1 and 𝑥𝐵 ≥ 1
(17)

x𝑒∗
𝐵

=


1 if 𝑐𝐻 or ( 𝑐𝐿 and 𝑥𝐴 = 0)

2 if 𝑐𝐿 and 𝑥𝐴 ≥ 1

C
x𝑒∗
𝐶/𝐷/𝐸 =



0 if 𝑐𝐻 or (𝑐𝐿 and 𝑥𝐴 = 0)

1 if 𝑐𝐿 and 𝑥𝐴 = 0

2 if 𝑐𝐿 and (𝑥𝐴 = 1 or 𝑥𝐵 = 0)

3 if 𝑐𝐿 and 𝑥𝐴 ≥ 2 and 𝑥𝐵 ≥ 1

x𝑒∗
𝐴
=


1 if 𝑐𝐻 or 𝑐𝐿 and 𝑥𝐵 = 0

2 if 𝑐𝐿 and 𝑥𝐵 ≥ 1

x𝑒∗
𝐵

=


1 if 𝑐𝐻 or 𝑐𝐿 and 𝑥𝐴 = 0

2 if 𝑐𝐿 and 𝑥𝐴 ≥ 1

Appendix A.5.2 The more the better

This heuristic means that subjects are trying to obtain as many signals as possible before making

a decision, regardless of the waiting cost. They only stop when they know there will be no more

signals to be gathered.

Table A-7: More is Better Heuristics

Network Single information source Multiple information source

NC x𝑒∗
𝐷

=


1 if 𝑥𝐴 = 0

2 if 𝑥𝐴 ≥ 1

𝑥𝑒∗
𝐴/𝐸 = 1

x𝑒∗
𝐶

=


1 if 𝑥𝐴 = 0 and 𝑥𝐵 = 0

2 otherwise

x𝑒∗
𝐵

=


1 if 𝑥𝐴 = 0

2 otherwise

C
x𝑒∗
𝐶/𝐷/𝐸 =


1 if 𝑥𝐴 = 0

2 if 𝑥𝐴 = 1 and 𝑥𝐵 = 0

3 if 𝑥𝐴 ≥ 2 or 𝑥𝐵 ≥ 1

x𝑒∗
𝐴
=


1 if 𝑥𝐵 = 0

2 otherwise

x𝑒∗
𝐵

=


1 if 𝑥𝐴 = 0

2 otherwise

Additional naive one: don’t care about the information source’s decision, wait until no more
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signals coming in:

Table A-8: More is Better (Naive) Heuristics

Network Single information source Multiple information source

NC 𝑥𝑒∗
𝐷

≥ 2

𝑥𝑒∗
𝐴/𝐸 ≥ 1

𝑥𝑒∗
𝐵/𝐶 ≥ 2

C 𝑥𝑒∗
𝐶/𝐷/𝐸 ≥ 3 𝑥𝑒∗

𝐴/𝐵 ≥ 2
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